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The following non-linear differential equation was introduced by Irving and Mullineux [1] as an
example for which the perturbation method could be applied:
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Under the assumption that the parameter e was both positive and small, they wrote

xðtÞ ¼ x0ðtÞ þ ex1ðtÞ þ Oðe2Þ; ð2aÞ

xð0Þ ¼ A; ’xð0Þ ¼ 0 ð2bÞ

and obtained the results
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Inspection of Eq. (3) shows that based on their calculations the obtained perturbation solution is
not periodic to terms of order e: This follows from the fact that x1ðtÞ contains secular terms [2]
and, consequently, is not a uniformly valid approximation [2]. Further, this particular calculation
implicitly assumes that the solutions to Eq. (1) are not only oscillatory, but also periodic. This is
not likely to be the actual situation since Eq. (1) contains a linear damping term on its right-side.
The major purpose of this communication is to examine Eq. (1) somewhat more detailed than

Irving and Mullineux [1] and try to come to some conclusions regarding the general behavior of its
solutions. To do this, this equation is first examined from the point of view of a general ‘‘physical
equation’’ where all the variables and parameters have physical units [3]. It will be shown that two
possible dimensionless equations can be constructed. Secondly, a study of the system equations in
phase-space will be done; however, the preliminary analysis does not provide much information
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except for the existence of a single fixed-point or equilibrium solution at ð %x; %yÞ ¼ ð0; 0Þ: Finally, a
numerical integration scheme [4] will be used to examine the solutions to Eq. (1) for a wide range
of initial values and magnitudes of the parameter e:
It should be noted that the right side of Eq. (1) contains a derivative term raised to a fractional

power. This is the major source of the difficulties that occurred in Ref. [1]. Such a term leads to
expressions having negative powers when the standard (regular) perturbation methods are
applied [1].
To begin, rewrite Eq. (1) in the physical equation form

d2y

d%t2
þ k1

dy

d%t
þ k2y ¼ �k3

dy

d%t

� �2=3

; ð4Þ

where all the parameters are taken to be positive and where y and %t have the physical units,
respectively, of distance ðLÞ and time ðTÞ: Denoting the physical units of a variable or parameter
by the symbol ½?�; it follows that

½y� ¼ L; ½%t � ¼ T ; ½k1� ¼
1

T
; ½k2� ¼

1

T2
; ½k3� ¼

L1=3

T4=3
: ð5Þ

Based on these results, the following two time and length scales can be constructed [2,3]:
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1ffiffiffiffiffi
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p ; T2 ¼
1

k1
; ð6aÞ
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Observe that T1 and T2 are, respectively, related to the periods of free, undamped harmonic
oscillator and the damped, linear harmonic oscillator [2].
Using the scaled variables

%t ¼ T1t and y ¼ L2x; ð7Þ

where ðt;xÞ are dimensionless variables, Eqn. (4) takes the form
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where

2e ¼
T1

T2
: ð9Þ

Observe that the parameter e occurs in both the first- and 4
3
-power forms. This minor problem can

be overcome by the transformation

x ¼ ebu; b > 0: ð10Þ

Substituting this into Eq. (8) gives
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where
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The requirement that a ¼ 1 gives b ¼ 1; and Eq. (11) becomes
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which is of exactly the same form as Eq. (1) except for the labelling of the dependent variable, and
a factor of two appears with e:
The appearance of e in Eq. (11) makes it difficult or maybe impossible to formulate a

perturbation method to ‘‘solve’’ it. Clearly, the form given in Eq. (13) is much better suited for the
construction of a perturbation procedure. For the remainder of this paper, the form of the I–M
equation given in Eq. (13) will be used with the replacements u ¼ x and du=dt ¼ dx=dt ¼ y:
The system equations for Eq. (13) are

dx

dt
¼ y;

dy

dt
¼ �x � 24=3ey � 2ey2=3 ð14Þ

and the trajectories in the ðx; yÞ phase-space are solutions to the first order differential equation

dy

dx
¼ �

x þ 2ey þ 24=3ey2=3

y
: ð15Þ

From Eq. (14) it follows that there is only one fixed-point or equilibrium solution and it is located
at the origin of the phase-space, i.e., ð %x; %yÞ ¼ ð0; 0Þ: However, the calculation and plotting of the
nullclines for Eq. (15) does not lead to any definitive conclusion regarding the stability of the
fixed-point [5]. In other words, the geometrical properties of the nullclines in a neighborhood of
the origin is consistent with the fixed-point being either stable or unstable.
One possibility to resolve this difficulty is to use the method of slowly varying amplitude and

phase (MSVAP) [2]. To first order in the small parameter e the amplitude aðt; eÞ and phase fðt; eÞ
are given by

da

dt
¼

e
2p

� Z 2p

0

f ða sin c; a coscÞcosc dc; ð16aÞ

df
dt

¼
e

2pa

� Z 2p

0

f ða sin c; a coscÞsin c dc; ð16bÞ

where for Eq. (13)

f ðx; ’xÞ ¼ �2 ’x � 24=3ð ’xÞ2=3 ¼ �2a cosc� 24=3ða coscÞ2=3 ð17Þ

and the solution, xðt; eÞ; is given by

xðt; eÞ ¼ aðt; eÞsin½t þ fðt; eÞ�: ð18Þ

Note that as a function of c; the function f is periodic with period 2p and even. Consequently, the
integral on the right side of Eq. (16b) is zero. Therefore,

df
dt

¼ 0 or fðt; eÞ ¼ f0 ¼ constant: ð19Þ
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Also, observe that ðcoscÞ2=3 is periodic with period 2p; is non-negative, and its Fourier expansion
takes the form [6]

ðcos cÞ2=3 ¼
f0

2
þ

XN
k¼1

fk cosð2kcÞ: ð20Þ

Using this result, the integral on the right side of Eq (16a) is trivial and the following is
obtained:

da

dt
¼ �ea ð21Þ

for which the solution is

aðt; eÞ ¼ a0e
�et; a0 ¼ constant: ð22Þ

Hence, the MSVAP gives as an approximation to the solution of Eq. (13) the expression

xðt; eÞ ¼ a0e
�et sinðt þ f0Þ: ð23Þ

This shows that all the solutions to Eq. (13) oscillate with the amplitude decreasing as a function
of time. From this analysis, it follows that the fixed-point, ð %x; %yÞ ¼ ð0; 0Þ; is stable.
Before leaving this particular calculation, it should be indicated that while the MSVAP can be

easily applied to Eq. (13) to determine a solution, to terms of order e [2], this procedure cannot be
used to generate higher order in e corrections to this lowest-order result. The reason for this
limitation is the occurrence of the ð ’xÞ2=3 term on the right side of Eq. (13).
An important technique used extensively in modern scientific and engineering research is

the application of numerical techniques to solve differential equations arising from the
mathematical modelling of various phenomena [7,8]. A nonstandard finite difference scheme [4]
for Eqs. (14) is

xkþ1 � cxk

f
¼ yk; ð24aÞ

ykþ1 � cyk

f
¼ �xk � 2eyk � 24=3eðykÞ

2=3; ð24bÞ

where tk ¼ hk; h ¼ Dt; xk and yk are, respectively, approximations to xðtkÞ and yðtkÞ; and the
functions cðe; hÞ and fðe; hÞ are

cðe; hÞ ¼
ee�ehffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p� 
h

h i
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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fðe; hÞ ¼
e�ehffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p� 
h

h i
: ð25bÞ

Inspection of Eqs. (24) shows that this scheme is explicit, i.e., xkþ1 and ykþ1 can be expressed as
functions of ðxk; yk; e; hÞ: Using the relation for yk; given in Eq. (24a), a single second order
difference equation can be obtained for xk; it is

xkþ1 � 2cxk þ c2xk�1

f2
þ 2e

xk � xk�1

f

� �
þ xk�1 ¼ �24=3e

xk � cxk�1

f

� �2=3

: ð26Þ
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Using the scheme in Eqs. (24), a large number of numerical solutions were evaluated for various
values of the initial conditions, x0 and y0; step-size h; and parameter e for 0peo1: Plots of xk and
yk versus tk; and phase-space, yk versus xk; were made and studied. The general features obtained
were (1) both xk and yk had damped oscillatory behavior with

lim
tk-N

ðxk; ykÞ ¼ ð0; 0Þ; ð27Þ

(2) the trajectories in the ðxk; ykÞ phase-space all spiraled into the origin. A typical set of
plots is given in Fig. 1 for the parameter values x0 ¼ 10; y0 ¼ 0:01; h ¼ 0:001 and ¼ 0:01: Of

Fig. 1. (a) and (b) Plots of xk and yk versus tk; and (c) xk versus yk; for x0 ¼ 10:00; y0 ¼ 0:01; h ¼ 0:001; and e ¼ 0:01:
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course, all of these results are in agreement with the above perturbation calculations based on
MSVAP.
In summary, the analytical and numerical studies clearly indicate that the I–M nonlinear

differential equation has all solutions of the form given by damped oscillations. This implies that
the fixed-point, ð %x; %yÞ ¼ ð0; 0Þ; is stable.
From a geometrical viewpoint, the trajectories in phase-space have the same properties as the

linear damped harmonic oscillator [2]. A physical way of understanding this issue is to examine
the equation

d2x

dt2
þ 2e

dx

dt
þ x ¼ �24=3e

dx

dt

� �2=3

ð28Þ

under the transformation t-� t; doing this gives

d2x

dt2
� 2e

dx

dt
þ x ¼ �24=3e

dx

dt

� �2=3

: ð29Þ

Note that every term retains its original sign except for the linear damping term. Consequently, in
spite of a more complex dynamics expected for Eq. (29), its solutions should be damped because
of the dissipative effects arising from the linear damping. This analysis also implies that the non-
linear term on the right side of Eq. (29) does not give rise to any dissipative effects with regard to
the full differential equation. Examples of this behavior are well known; see Section 2.4.2 of M [2].
Future work on this equation will concentrate on two issues: (1) Use phase-space and related

methods to mathematically show that the fixed-point, ð %x; %yÞ ¼ ð0; 0Þ; is globally stable; and (2) try
to construct a perturbation procedure to calculate higher order terms that provide a uniformly
valid approximation to the solution.
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